Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Korean Neurosurg Soc ; 65(5): 741-750, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1924062

ABSTRACT

OBJECTIVE: In March 2020, World Health Organization declared a global pandemic caused by a novel coronavirus (SARS-CoV-2). The disease caused by this virus is called COVID-19. Due to its high contagiousness, many changes have occurred in overall areas of our daily life including hospital use by patients. The aim of this study was to investigate the impact of COVID-19 on volume of spine surgery in South Korea using the National Health Insurance database and compare it with the volume of a homologous period before the pandemic. METHODS: Data of related to spine surgery from January 2019 to April 2021 were obtained from the National Health Insurance and Health Insurance Review and Assessment Service database. Primary outcomes were total number of patients, rate of patients per 100000 population, and total number of procedures. The number of patients by hospital size was also analyzed. RESULTS: COVID-19 outbreaks occurred in South Korea in March, August, and December of 2020. Compared to the previous year, the total number of patients who underwent spinal surgery showed a decrease for 2-3 months after the first and second outbreaks. However, it showed an increasing trend after the third outbreak. The same pattern was observed in terms of the ratio of the number of patients per 100000 population. Between 2019 and 2021, the mean number of spine surgeries per month tended to increase. Mean annual medical expenses increased over the years (p=0.001). When the number of spine surgeries was analyzed by hospital size, proportion of tertiary general hospital in 2021 increased compared to those in 2019 and 2020 (vs. 2019, p=0.012; vs. 2020, p=0.016). The proportion of general hospital was significantly decreased in 2020 compared to that in 2019 (p=0.037). CONCLUSION: After the COVID-19 outbreak, patients tended to postpone spinal surgery temporarily. The number of spinal surgeries decreased for 2-3 months after the first and second outbreaks. However, as the ability to respond to the COVID-19 pandemic at the hospital and society-wide level gradually increased, the number of spine surgeries did not decrease after the third outbreak in December 2020. In addition, the annual number of spine surgeries continued to increase. However, it should be noted that patients tend to be increasingly concentrated in tertiary hospitals for spinal surgery.

2.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1447578

ABSTRACT

Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop more efficient and accurate machine learning (ML)-based prediction algorithms for the rapid identification of therapeutic peptides against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Several peptide-based ML approaches, including anti-coronavirus peptides (ACVPs), IL-6 inducing epitopes and other epitopes targeting SARS-CoV-2, have been implemented in COVID-19 therapeutics. Owing to the growing interest in the COVID-19 field, it is crucial to systematically compare the existing ML algorithms based on their performances. Accordingly, we comprehensively evaluated the state-of-the-art IL-6 and AVP predictors against coronaviruses in terms of core algorithms, feature encoding schemes, performance evaluation metrics and software usability. A comprehensive performance assessment was then conducted to evaluate the robustness and scalability of the existing predictors using well-constructed independent validation datasets. Additionally, we discussed the advantages and disadvantages of the existing methods, providing useful insights into the development of novel computational tools for characterizing and identifying epitopes or ACVPs. The insights gained from this review are anticipated to provide critical guidance to the scientific community in the rapid design and development of accurate and efficient next-generation in silico tools against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , COVID-19 , Machine Learning , Pandemics/prevention & control , Peptides/chemistry , SARS-CoV-2/metabolism , Software , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Humans , Peptides/therapeutic use
3.
Toxicol Appl Pharmacol ; 404: 115182, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-694488

ABSTRACT

Due to the pandemic of coronavirus disease 2019, the use of disinfectants is rapidly increasing worldwide. Didecyldimethylammonium chloride (DDAC) is an EPA-registered disinfectant, it was also a component in humidifier disinfectants that had caused idiopathic pulmonary diseases in Korea. In this study, we identified the possible pulmonary toxic response and mechanism using human bronchial epithelial (BEAS-2B) cells and mice. First, cell viability decreased sharply at a 4 µg/mL of concentration. The volume of intracellular organelles and the ROS level reduced, leading to the formation of apoptotic bodies and an increase of the LDH release. Secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and matrix metalloproteinase-1 also significantly increased. More importantly, lamellar body-like structures were formed in both the cells and mice exposed to DDAC, and the expression of both the indicator proteins for lamellar body (ABCA3 and Rab11a) and surfactant proteins (A, B, and D) was clearly enhanced. In addition, chronic fibrotic pulmonary lesions were notably observed in mice instilled twice (weekly) with DDAC (500 µg), ultimately resulting in death. Taken together, we suggest that disruption of pulmonary surfactant homeostasis may contribute to DDAC-induced cell death and subsequent pathophysiology and that the formation of lamellar body-like structures may play a role as the trigger. In addition, we propose that the cause of sudden death of mice exposed to DDAC should be clearly elucidated for the safe application of DDAC.


Subject(s)
Betacoronavirus/drug effects , Cell Survival/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Quaternary Ammonium Compounds/toxicity , Animals , Apoptosis/drug effects , COVID-19 , Cell Line , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mice, Inbred ICR , Quaternary Ammonium Compounds/administration & dosage , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL